Nox2 contributes to cardiac fibrosis in diabetic cardiomyopathy in a transforming growth factor-β dependent manner.

نویسندگان

  • Yuqin Liu
  • Jinhua Zhang
چکیده

PURPOSE This study aimed to investigate the effect of Nox2 on cardiac fibrosis and to elucidate the regulatory mechanism of Nox2 in the development of DCM. METHODS We established normal and insulin-resistant cellular model using neonatal rat cardiac fibroblasts. Then Nox2-specific siRNA were transfected into cardiac fibroblasts with Lipofectamine ® 2000 and crambled siRNA sequence was considered as control. Meanwhile, a part of cells were randomly selected to be treated with or without transforming growth factor-β (TGF-β). Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were respectively performed to determine the expression level of related molecules, such as Nox2, collagen type I and III (COL I and III) and PI3K/AKT and PKC/Rho signaling pathway-related proteins. RESULTS TGF-β stimulation significantly increased the expression level of Nox2 both in mRNA and protein levels. Suppression of the Nox2 markedly decreased the expression of COL I and COL III in normal and insulin-resistant cellular model with TGF-β stimulation. Moreover, suppression of the Nox2 significantly decreased the expression of PI3K/AKT and PKC/Rho signaling pathway-related proteins in insulin-resistant cellular model with TGF-β stimulation. However, suppression of Nox2 had no effects on these proteins without TGF-β stimulation. CONCLUSIONS Our finding reveals that Nox2 may promote synthesis of COL I and III via involved in PI3K/AKT and PKC/Rho signaling pathway in a TGF-β dependent manner and consequently promote cardiac fibrosis in the development of DCM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats

Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...

متن کامل

α11 integrin stimulates myofibroblast differentiation in diabetic cardiomyopathy.

AIMS Diabetic cardiomyopathy is characterized by the production of a disorganized fibrotic matrix in the absence of coronary atherosclerosis and hypertension. We examined whether adhesion of cardiac fibroblasts to glycated collagens mediates the differentiation of pro-fibrotic myofibroblasts, which may contribute to cardiac fibrosis. METHODS AND RESULTS By microarray, we found that methylglyo...

متن کامل

High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy

BACKGROUND Despite advances in the treatment of heart failure, mortality remains high, particularly in individuals with diabetes. Activated transforming growth factor beta (TGF-β) contributes to the pathogenesis of the fibrotic interstitium observed in diabetic cardiomyopathy. We hypothesized that high glucose enhances the activity of the transcriptional co-activator p300, leading to the activa...

متن کامل

Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice

BACKGROUND Myocardial fibrosis is an essential hallmark of diabetic cardiomyopathy (DCM) contributing to cardiac dysfunctions. Resveratrol, an antioxidant, exerts its anti-fibrotic effect via inhibition of oxidative stress, while the underlying molecular mechanism remains largely elusive. Periostin, a fibrogenesis matricellular protein, has been shown to be associated with oxidative stress. In ...

متن کامل

Nerve Growth Factor Gene Therapy Using Adeno-Associated Viral Vectors Prevents Cardiomyopathy in Type 1 Diabetic Mice

Diabetes is a cause of cardiac dysfunction, reduced myocardial perfusion, and ultimately heart failure. Nerve growth factor (NGF) exerts protective effects on the cardiovascular system. This study investigated whether NGF gene transfer can prevent diabetic cardiomyopathy in mice. We worked with mice with streptozotocin-induced type 1 diabetes and with nondiabetic control mice. After having esta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of clinical and experimental pathology

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2015